

Concepts and Components of Full-System Simulation of
Distributed Memory Parallel Computers

Fco. Javier Ridruejo Jose Miguel-Alonso Javier Navaridas
Dep. of Computer Architecture and Technology, The University of the Basque Country

P. Manuel de Lardizabal, 1 (20018) Donostia-San Sebastian, Spain. Telephone number +34 943018019
franciscojavier.ridruejo@ehu.es j.miguel@ehu.es javier.navaridas@ehu.es

ABSTRACT
In this work we discuss a range of approaches to full-system
simulation of distributed memory parallel computers, with
emphasis on the interconnection network. We present our
environment, based on Simics®, and discuss how unforeseen
interactions and fine tuning of components can affect results.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors) - Interconnection architectures

C.4 [Performance of Systems]: Performance of systems - Design
studies, measurement techniques, modeling techniques.

General Terms
Design, performance.

Keywords
Full-system simulation, evaluation of interconnection networks.

1. INTRODUCTION
Simulation is a key activity in the design of a massively parallel
computer (MPP). Initially it can be done using simplistic models
of the computer and the applied workload, but the final, validation
phases must be done with full-system simulators that accurately
model every component and the workloads it will execute.

A fundamental subsystem of a distributed memory parallel
computer is the Interconnection Network (IN from now on) that
allows computing elements to communicate and synchronize.
This IN must be of low latency and high throughput to efficiently
run parallel applications. As we focus our research on IN, in this
paper we describe the components needed to do full-system
simulation of IN, discuss some alternatives and finally propose
our own, exposing the problems arisen like unforeseen
interactions, between simulation components.

2. ELEMENTS TAKING PART IN A FULL-
SYSTEM SIMULATION OF INs

A full-system simulation of a MPP includes the simulation of both
the computation nodes and the IN. We can see the components
that take part into the simulation in Figure 1. Computation nodes
are simulated using detailed full-system simulators that allow the
execution of unmodified, actual software. Parallel applications
run and communicate using MPI libraries, protocol stacks and
drivers of the unmodified operating system through simulated
NICs (Network Interface Cards).

The IN simulator must route messages between computation
nodes, simulating accurately the time required to pass through the
network. The Traffic Manager module passes messages between
computation nodes and the IN, so it is the interface that
communicates both kinds of simulators. Finally, the
Synchronization module keeps the synchronization among all
concurrently running simulators. This is needed to obtain a time-
accurate performance evaluation.

3. INTERFACING NETWORK AND NODE
SIMULATORS

There are several approaches to do the interchange of traffic
between the IN and the computation node simulators, depending
on where packets are extracted. One option could be to substitute
the NIC driver with another that intercepts the traffic and passes it
to the Traffic Manager. This would require programming a
network driver that would be able to interact with the simulated
hardware NIC and the protocol stack of the operating system in
use. The main advantage of this approach is that we could reuse
the simulated hardware NIC, provided by the full system
simulator, and leave the protocol stack unmodified. Just the
opposite option would be to program a whole set of components
for a given IN, which include a simulated hardware NIC, its
driver, a proper protocol stack and the MPI library to use. So we
would have full control over the communication and results
would be very realistic. The drawback of this approach is clear: it
requires a huge (and error-prone) software implementation effort.

Usually, full system simulators come with default modules like
Ethernet NICs, and can run unmodified OS that include
appropriate drivers and protocol stacks. The reutilization of these
components allows us to use proven software, reducing
implementation effort. Thus, an approach in the middle of the two
above is the addition of capabilities to the (simulated) hardware
NIC, enabling it to send and receive packets to the Traffic
Manager. In our environment we have used this approach, reusing
the default Ethernet NICs provided by Simics and the drivers and
TCP (UDP)/IP stacks provided by Linux, so our experiments are
limited to the use of these components: all the communication is
TCP/IP over Ethernet. Figure 2 shows the protocol stacks that can

Copyright is held by the author/owner(s).
HPDC’07, June 25–29, 2007, Monterey, California, USA.
ACM 978-1-59593-673-8/07/0006.

Figure 1. Elements in a full-system simulation of IN

be used in our environment, plus an example of how a Myrinet
protocol stack would be.

We have identified two approaches to synchronize computation
nodes and IN. One way could be run them in lock-step mode, that
is, first run one simulator for an interval of time, then run the
other one for the same amount of time and so on. The other way
could be running both simulators concurrently and stop them
when a fixed amount of simulated time has passed, waiting for the
slower one. Both approaches need to be fine-tuned so as not to
introduce additional delays which would provide inaccurate
results. If simulators are allowed to run out of synch for large
periods of time the synchronization overhead is small but the
delays introduced are large. On the other hand, frequent
synchronization provides accurate results but at the price of
longer simulation times.

4. A PROPOSAL FOR FULL-SYSTEM
SIMULATION OF INs

Two simulators compose our full-system simulation environment,
Simics® [1] used to simulate the computation nodes, and INSEE
[2] as the IN simulator. We chose to reuse as much as possible to
reduce implementation effort and to minimize errors, so we
decided to use a fast Ethernet NIC module provided by Simics.
As this simulator can run an actual operating system, we use a
Linux distribution (RedHat 7.3) with the usual
TCP(UDP)/IP/Ethernet protocol stack. The traffic extracted from
the substituted simulated Ethernet is passed to the Traffic
Manager that injects it into INSEE, and vice versa. INSEE
simulates the passing of messages through the IN. We have also
implemented synchronization modules into Simics and INSEE to
keep them synchronized.

Both simulators have different perception of time (Simics is event
driven and INSEE is cycle driven). The synchronization of the
simulators is done in lock-step mode. Each Simics instance
includes a synchronization client and INSEE includes a
synchronization server. Each client allows Simics to run for a
certain time, and then sends a signal to the server and stops
waiting a signal to resume. When the synchronization server has
received a signal from all computation nodes, INSEE runs for the
equivalent number of cycles, and then sends a signal to all clients
– which allows Simics instances to resume their executions.

5. EXPERIMENTAL WORK
Our environment for full-system simulation of IN has been used
in experiments related to the study of the effects of network-based
congestion control. To illustrate our work, we have evaluated a

congestion control technique called IPR (in-transit priority) on a
64 node ring with multiple injection sources. Initially, we fed
INSEE with actual traces of BT, CG and IS applications from the
NAS Parallel Benchmarks (NPB), to obtain a preliminary, very
optimistic estimation of achievable performance improvements.
The results shown in Figure 3a predict that the reduction of
execution time should be at most 15% (IS) and in some cases
there should be a performance drop of 3% (CG).

Then, we ran the same benchmarks in our full-system simulator of
INs using an MPICH/TCP/IP/Ethernet protocol stack. Results
shown in Figure 3b differ from those from traces. We discovered
unforeseen interactions between congestion control at network
level (IPR) and at host level (TCP). IPR helped to reduce delay
and jitter so TCP works better, and the flow of packets through
the network is accelerated. However, without IPR, jitter is higher
due to congestion produced at network, and to delays introduced
in the synchronization of simulators, so TCP retransmits packets
and activates the slow start mechanism, causing a performance
drop. Note the wide confidence intervals in the Base case due to
the variability of the jitter and the number of packets resent.

6. CONCLUSIONS
The full-system simulation of IN requires a large collection of
interrelated components done from scratch or re-used. There are
multiple factors that can lead to inaccurate results: interaction
among modules, reutilization of components for other purposes
than those they were designed for, synchronization between
simulators, protocol stacks, MPI implementations, or drivers.
Design decisions must be taken carefully to avoid wrong results.
Moreover, a trade-off must be found between speed and fidelity
of the simulation.

7. ACKNOWLEDGMENTS
This work has been done with the support of the Spanish
Ministerio de Educación y Ciencia, grant TIN2004-07440-C02-
02. Mr. J. Navaridas is supported by a doctoral grant of the
UPV/EHU.

8. REFERENCES
[1] P. S. Magnusson et al. Simics: A full system simulation

platform. IEEE Computer, 35(2):50–58, February 2002.
[2] F.J. Ridruejo, J. Miguel-Alonso. INSEE: an Interconnection

Network Simulation and Evaluation Environment. Lecture
Notes in Computer Science, Volume 3648 / 2005 (Proc.
Euro-Par 2005), pp. 1014 – 102.

(a)Trace based simulation

0.6

0.7

0.8

0.9

1.0

1.1

1.2

BT CG IS

Base
IPR

(b)1000 Simics cycles every 200 INSEE cycles

0.6

0.7

0.8

0.9

1

1.1

1.2

BT CG IS

Base
IPR

Figure 3. (a) Trace driven simulation. Times to complete a
run of BT, CG and IS, relative to Base case (without IPR)

and 99% confidence intervals. (b) Full-system simulation of
IN with a synchronization of 1000 Simics cycles every 200

INSEE cycles. Simulated network speed is 1280Mb/s.

Ethernet

IP

TCP Flow
control & error

recovery

NPB

P4

Ethernet

IP

UDP

NPB

Error recovery

MPICH
K

er
ne

l s
pa

ce
U

se
r s

pa
ce

LA-MPI (UDP) LAM (lamd)

MPI MPI

Myrinet

GM

NPB

LAM (Myrinet)

MPI

Ethernet

IP

UDP

NPB

Daemon flow
control & error

recovery

MPI

Figure 2. Communication protocol stacks for different MPI

implementations and IN.

1000 Simics cycles every 200 INSEE cycles

0.6

0.7

0.8

0.9

1

1.1

1.2

BT CG IS

Base
IPR

Trace based simulation

0.6

0.7

0.8

0.9

1.0

1.1

1.2

BT CG IS

Base
IPR

